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Abstract

The Statewide Air Pollution Research Center continues to assess the
mutagenic potency, as determined by the Ames Salmonella/mammalian-
microsome assay, of suspended particulate matter in the South Coast Air
Basin (SCAB). This program was designed to reveal factors influencing the -
diurnal variation and geographical distribution of the mutagenicity
associated with airborne particles and to establish current "baseline"
levels of this mutagenicity for future reference. The current year of
this program involves identification of the chemical species responsible
for this observed mutagenicity.

Most studies to date have determined the mutagenicity for sampling
periods of 24 hours or more. Unfortunately, a collection period of this
length averages any mutagenicity peaks which might have occurred.
Furthermore, such data may not have sufficient time-resolution to permit
assessments of the nature of the mutagen sources (i.e., mobile vs.
stationary emissions or primary vs. secondary pollutants). Therefore,
investigations were conducted on diurnal variations in the mutagenicity of
ambient particles collected simultaneously at several sites across the
SCAB. These collections were made every twelve hours for a 72~hour period
in winter 1980 and every three hours for a 24~hour period, on two late
summer days in 1980 and an early spring day in 1981.

The following conclusions can be drawn from this program:

e Levels of particulate mutagenicity are highly variable, ranging

over nearly two orders of magnitude during the sampling periods used in
this work. :

. Both direct-acting and activatable mutagens are present in the
organic extracts from suspended particles collected in the SCAB.

e Average mutagen density is generally higher during the nighttime
hours than during the day.

. The diurnal variation exhibited by particulate mutagenicity is
similar to that expected of a primary pollutant, with the levels respond-
ing to emission rates and atmospheric mixing heights. Significant
positive correlations are observed between the mutagen parameters and NO,
NOy, and CO levels, while secondary pollutants such as ozone and peroxy-
acetyl nitrate correlate negatively.

e Nitroarenes may contribute substantially to the mutagenilcity of
ambient particulate organic matter in the SCAB.

e No clear evidence for or against atmospheric transformations which
may affect particulate mutagenicity is apparent from our data.
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I. EXECUTIVE SUMMARY

This document reports the results of work performed at the Statewide
Air Pollution Research Center under California Air Resources Board Con-
tract A9-077-31, '"Geographical and Temporal Distribution of Atmospheric
Mutagens in California," and carried out during the period from December
10, 1979 to June 30, 1981. This investigation concerns the potential
health hazard confronting urban dwellers in California’s South Coast Air
Basin (SCAB) from the inhalation and subsequent deposition of combustion-
related particulate organic matter (POM) present in the polluted
atmosphere.

Extracts of airborne particulate organic matter (POM) collected in
urban areas throughout the world have been known for several decades to be
carcinogenic in experimental animals (Leiter et al. 1942, National Academy
of Sciences 1972, 1981, Santodonato et al. 1979). Furthermore, these
extracts are directly mutagenic in the Ames Salmonella assay (Pitts et
al., 1977a,b, Talcott and Wei 1977, Tokiwa et al. 1977, Chrisp and Fisher
1980, Hoffmann et al., 1980) with the activity concentrated in particles
< 1 yn in diameter [i.e., 1in the respirable size range (Pitts et al.
1978a,b, Pitts 1979, Talcott and Harger 1980].

It is important to determinme the sources of this activity, as well as
the ambient 1levels to which urban and suburban populations may be
exposed. Most studies to date have determined the mutagenicity for samp-
ling periods of 24 hours or more. Unfortunately, a collection period of
this length averages any mutagenicity peaks which might have occurred.
Furthermore, such data may not have sufficient time-resolution to permit
assessments of the nature of the mutagen sources (i.e., mobile vs. sta-
tionary emissions or primary vs. secondary pollutants). Therefore, inves-
tigations were conducted on diurnal variations in the mutagenicity of
ambient particles collected simultaneously at several sites in the SCAB.
These collections were made every twelve hours for a 72-hour period during
winter 1980 and every three hours for a 24-hour period, on two late summer
days in 1980 and an early spring day in 1981.

Research performed during the first contract period of this
continuing investigation has included adaptation of the Ames test to quan-

titative measurement of ambient particulate mutagenicity, development and
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validation of collection, extraction and sample handling methodology for
use in such assays, examination of the effects of various filter types on
the measured wmutagenic activity of the collected sample, and quantitative
measurement of the average airborne particulate mutagenicity (day vs.
night) at eight sites in the SCAB over a period of three days in July
1979. The results of these studies, detailed in our earlier report (Pitts
et al., 1980), demonstrated a large variability in the intensity of
particulate mutagenicity impacting the populations of the SCAB, both imn
terms of geographical locatlion and time of day. Concurrent with the
mutagenicity assays conducted during these earlier experiments, data on
air mass transport and air quality were compiled in an attempt to cobserve
correlations among these more easily measured parameters and mutagenicity
associated with ambient POM. However, limitations in the size of the data
set and in the time resolution of the mutagenicity measurements limited
the level of confidence which could be placed in the observed trendse.
During the period covered by this report, we have greatly expanded
our data set of POM mutagenicity and air quality measurements, and have
improved the time resolution of the POM mutagenicity measurement by dec-—
reasing sampling increments to only three hours. The following paragraphs
outline the results of the past year’s research into this important aspect
of urban air pollution; details of the work carried out under this program

are contained in Sections IT through IV.

A. Analytical Protocols for POM Mutagenicity Measurements

POM samples were collected on tared Pallflex T60A20 Teflon-impreg-
nated glass fiber filters by conventional high volume filtration. The
samplers were calibrated to ensure accurate flow rates, and the filters
were pre-cleaned by Soxhlet extraction with CH2012 and CH3OH to provide
low organic background levels. After collection, each filter was
reweighed to determine particulate loading and then stored at -20°C in the
dark prior to extraction. As soon as possible after collection, each
filter or group of filters was repeatedly extracted by ultrasonic agita-
tion in a mixture (l:1:1) of dichloromethane, methanol and toluene. The
combined extracts were filtered, reduced in volume under vacuum (> 20

Torr) and blown to dryness to constant (+ 1%) weight with a stream of dry
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nitrogen at 35-40°C. The samples were then redissolved in dimethyl-
sulfoxide and submitted to our microbiology laboratory for Ames assay.
They were stored at -70°C until actual testing could be performed.

The mutagenicity assays were conducted using the protocol recommended
by Ames (Ames et al. 1975) but incorporating refinements developed in
these laboratories (Belser et al. 1981) which improve the precision of the
test. Preliminary screens of the samples were performed to determine the
proper dosage levels, the most responsive tester strain, and the optimum
S9 (mammalian metabolic enzyme extract) concentration to be used for
observation of activatable mutagenicity. The quantitative assay of each
sample set was performed during a single day whenever possible, using
triplicate plates and a parallel assay of standard mutagens (benzo(a)-
pyrene (BaP), 2-nitrofluorene (2-NF), 2-aminoanthracene (2-AA) and quer=-
cetin] to provide verification of normal strain response. Revertant
colonies on each sample plate were entered into a computer together with
the other relevant sample parameters, and the test data was automatically
reduced and printed out in final form. The final mutagenicity data were

tabulated as mutagen density (revertants per cubic meter of sampled air),

a measure of the impacted populations’ exposure to the substances detected

by the Ames test, and as mutagen loading (revertants per milligram partic-

ulate), a measure of the concentration of substances active in the Ames
test on a mass basis which may be useful in distinguishing different part-
iculate mutagen sources and in establishing the effects of atmospheric
reactivity on the POM.

Concurrent with each sample collection and analysis, air quality
parameters (NO, NO,, S0,, 05, CO, PAN and Bg ¢ levels) and wind direction
and speed were compiled for each sampling site. After analysis of the
sample’s mutagenicity, the complete data set was inspected by computer for
correlations among the measured variables.

These extraction methods have been shown to deliver >95% of the org-—
anic solvent-extractable mutagenic material from even heavily loaded
filter samples, and to produce mutagen density and loading values with
relative standard deviations of +15% from separate particulate samples

collected in parallel.
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B. February 4-7, 1980: Nine Sampling Sites, 12-Hour Resolution over 72

Continuous Hours

This sampling period was initiated during a severe winter smog
episode and continued for 72 hours, by which time a Santa Ana condition
had developed. The sampling sites (Figure 1) included the eight locations
used in the 1979 study (Pitts et al. 1980), namely West Los Angeles,
Westwood, Long Beach, California State University Los Angeles (csuLA),
Costa Mesa, Claremont, Fontana and Riverside, as well as an additional
site, the Haagen-Smit Laboratory in El Monte. Two hi-vol samplers were
located at each location in order to provide a '"backup" in the event one
of the samplers failed or the sample was lost for some other reason.
Filters were changed at nominal 12-hour intervals, providing a total of 54
samples (in duplicate) which were analyzed separately for both direct and
activatable mutagenicity.

Sampling commenced at 2100 hours PST February 4, 1980 and continued
until 2100 PST on February 7, 1980. During the first sampling period NO
and NO2 reached omne-hour average concentrations of 750 and 210 ppb,
respectively, and the carbon monoxide peak was recorded as 12 ppm as
measured at the Los Angeles SCAQMD. The following day was also char-
acterized by severe winter pollution, when the ozone concentration reached
110 ppb in West Los Angeles, and similar counditions prevailed until the
evening hours of February 6, when strong winds from the northeast began to
sweep the area. During the final sampling period, '"clean air" conditions
prevailed at several sites; background levels of all of the monitored
pollutants were recorded at the inland sites, while the coastal areas
showed the impact of direct emissions in moderate levels of CO, NO and NOZ
but little photochemical ozone production. Skies throughout the sampling
period were uncbscured.

The mutagenicity data for this period showed that, in most cases,
direct activity was more intense than the measured activatable mutagen-
icity (2% S9), in contrast to our July 11-14, 1979, measurements (Pitts et
al., 1980). When the data set was split into day (0900-2100 PST) and
night (2100-0900 PST) measurements and averaged over the entire sampling
period, all sites except Long Beach and Fontana showed higher mutagen
density at night. This trend had also been observed at several of the

sites during our earlier summer collection. Due to the unstable
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meteorological counditions prevailing during the winter collection,
however, these average values are not interpretable in terms of transport
phenomena.

The 12-hour resolution obtained in the February study offers more
information than a comparable 24~hour collection. Figure 2 shows the 12-
hour average direct-acting mutagen densities at the sampling sites during
this period, measured using Ames’ strain TA98. The wvalues range from a
high of 193 rev w3 at CSULA during the first 12-hour sampling period, to

3 on the final day at

very low "plean air" values of less than 10 rev w
several sites. The changes in the wmutagenicity parameters clearly reflect
the influence of meteorology and air quality observed independently during
this period. At the beginning of the sampling period, the pollution
eplsode was largely confined to the primary emission sites near the coast;
our trajectory analysis shows that onshore flow during February 5 produced
transport to the inland "receptor sites" of the basin. The winds which
arose on the night of February 6 and continued during the final sampling
period swept the area clean. The levels of pollutant gases which were
monitored are also consistent wlth the meteorology and with the mutagen
parameters. A simple Pearson analysis of this data set revealed that both
mutagen density and mutagen loading correlated positively with NO, NO,,
and especially CO levels, and that the mutagen loading parameter corre-

lated negatively with ozone concentration.

Ce Three-Hour Resolution over 24 Hours at Three Sites, Summer and

Winter Collections

These unprecedented high resolution studies produced detailed
profiles of the diurnal behavior of airborne particulate mutagenicity
during periods representative of "average'" days in the SCAB. The diurmal
behavior of the levels of the more easily monitored pollutants 1s well
established, so that the measurements reported here can be compared to
these other known trends.

The sampling was conducted at three sites; Los Angeles, on the roof
of the Physical Science Building of the California State University at Los
Angeles (CSULA), in an area of strong primary pollutant emissions; Clare-
mont, on the roof of the Jacobs Science Center of Harvey Mudd College

(HMC), representing an intermediate smog receptor site; and Riverside, on
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the roof of the California Air Resources Board Mobile Laboratory (ARBML)
for Air Pollution Research on the University of California campus at
Riverside (UCR), a downwind receptor site. Six samplers were installed at
each site in order to provide sufficient sample for Ames assay. Filters
on five of these samplers were changed at three-hour intervals, while the
sixth collected a 24-~hour composite sample for comparison purposes.
Extraction of three of the short-term filters gave enough material for
Ames testing; the remaining two filters served as backup or archival
samples.

Ames testing was carried out using strain TA98, which has consist-
ently exhibited the strongest respouse for extracts of ambient POM of any
of the commonly used strains. Alr quality parameters were determined at

each collection site, with the addition of PAN and b measurements, and

scat
air mass trajectories were plotted for three hour intervals in order to
correspond with the resolution of the mutagenicity measurements.

Four sample sets were collected, on July 29, Séptember 12 and Septem—
ber 17, 1980 and during March 11-12, 1981. The first three sampling
periods were initiated at 0000 hours PST, while the last was begun at 1200
hours PST. The July 29 sample was incomplete due to electrical failures
at two of the sites, and was not amalyzed.

l. September 12, 1980

Onshore flow prevailed at all sites throughout this sampling
period. The day was characterized by a moderate summer—type smog episode,
with an ozome level of 232 ppb <(half hour average) recorded at
Claremont. The mutagen densities at each site, with and without metabolic
activation, are plotted in Figures 3 and 4 as a function of time of day.
In contrast to the February 4-7, 1980 collection results and in agreement
with our 1979 summer study, the samples showed increasad activity in the
presence of mammalian metabolic enzymes. As anticipated, the mutagen
density varied substantially during the day, the effect being most pron-
ounced in Claremont where the 0600-0900 PST hours sample exhibited three
times the activity of the 1200-1500 PST hours sample.

Similar trends in the diurnal behavior of mutagen density were
observed at each site. The values generally fell during the 0000-0600
hour PST period, rose sharply during the morning, fell to a minimum during

the early afternoon, and rose again around 1800 PST. Comparison of the
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24-hour average mutagen densities derived from the long term samples with
those obtained by summing the 3-hour values showed a good correspondence
at the Claremont site, but the long-term samples collected at Riverside
and Los Angeles gave lower values than the composite of short term
samples. This difference, which amounted to ~33% in both cases; is not
statistically significant, however. The mutagenicity measurements again
correlated positively with WO, N02 and CO concentrations, and negatively
with O3 levels.

This sample set was tested using a newly developed Ames Salmomnella
strain, TA98NR, which is similar to TA98 but lacks the bacterial metabo-
lism responsible for the strong '"direct” mutagenicity of simple nitro-
. arenes such as 2-nitrofluorene and l-nitropyrene toward TA98 (Rosenkranz
and Speck 1975, 1976, Rosenkranz and Poirier 1979, Rosenkranz et al.
1981). The results of this assay indicates that nitroarenes may contrib-
ute substantially to the direct mutagenicity of suspended particles in the
SCAB.

2. September 17, 1980

Of fshore flow prevailed at all sites at the beginning of this
sampling period, changing to onshore at approximately 1100 PST. This day
was characterized by more severe and widespread photochemical activity,
with the ozome level reaching 285 ppb in Claremont and 255 ppb at River-
side at 1500 PST. Plots of mutagen density vs. time of day are presented
in Figures 5 and 6. The patterns observed on September 12 were repeated,
at higher overall levels. For example, the highest mutagen density
occurred at Los Angeles in the early hours of the morning at 180 rev m-3
(TA98, 459) and fell to less than 50 rev m"3 between 1200 and 1500 PST.
The average mutagen density at this site (24 hour sample) was measured as
71 rev_m—3, less than half the peak 3-hour average. Analysis of the 24~
hour samples generally showed excellent agreement with the sum of short-
term measurements. The worst case, a difference of 307 at Los Angeles,
still was statistically insignificante. The pattern of morning peak and
afternoon low mutagen densities with a gradual increase in the evening was
repeated, as was the increase in mutagenic activity of the POM extracts in

the presence of mammalian metabolic enzymes during the rush hours. Anal-

ysis of the gas phase pollutant data again showed that the mutagenicity
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measurements correlated positively with NO, NO, and CO levels and nega-
tively with 05 concentrations.
3. March 11-12, 1981

This sample set was collected in order to provide data for a day
typical of the winter season, when air pollution in the SCAB is often
characterized by higher relative humidity, NO_ and PAN levels and less
ozone production than during the summer months. The sampling period began
at noon on March 11, and the persistent onshore winds during the next
twenty-four hours frustrated our attempts to sample "winter smog" on this
occasion. Light pollution was indicated by the air quality data at the
Los Angeles and Claremont sites; ozone concentrations reached maxima of 98
ppb iIn Riverside (1500-1600 hours PST), 63 ppb in Claremont (1100-1200
hours PST), and 67 ppb in Los Angeles (1300-1400 hours PST), while NO and
NOy levels were usually below 50 ppb at all sites. The particulate muta-
genicity was also low.

Figures 7 and 8 show the diurnal behavior of mutagen density at the
three sites. The most notable features of these diurnal profiles are the
prominent peaks occurring during the morning and evening hours, again
usually coincident with observable dincreases in S9 activation. Alr
quality data used in the linear regression analysis of this data set were
obtained from the nearest SCAQMD monitoring station at the Los Angeles and
Claremont sites when equipment malfunctioned at the actual sampling
positions. While the distance of the measurement statioms from the
particulate collections and the lower precision of the measurements
available from the SCAQMD can be expected to adversely affect the data
analysis, the trends observed during the September studies were reproduced
fairly well in this analysis. Correlations of NO, N0, and CO with mutagen
density were significant at the 957 confidence level for the Riverside
data (where the air quality data was collected on-site); the relationship
with CO0 was preserved in the Claremont and Los Angeles data sets, but the
correspondence between NO  and mutagenicity was less pronounced. There
was a negative correlation of mutgenicity data with ozone despite the
lower concentrations of ozome at this time of year.

Overall, the data for this day showed brief periods of mutagen
introduction into the atmosphere followed by rapid dispersion and clear-

ance through wind actiom. It is interesting to mote that even during this
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relatively "clean" period the maximum three-hour average mutagen density

reached 59 revertants/cubic meter at Los Angeles (600-900 hours PST).

D. Conclusions

We have demonstrated the feasibility of short—term assay of the
nutagenic material associated with suspended particulate matter, and have
assembled a data base which includes over one hundred such measurements.
These assays were conducted using reproducible and sensitive methods which
enable quantitative comparison of the intensity of particulate mutageni-
city among different air masses. Other more easily measured air quality
parameters were compliled during the particulate sampling periods in order
to provide a means of evaluating the severity of pollution in more
conventional terms and to serve as a data base in a search for relation-
ships among the routinely monitored wvariables and our mutagenicity
measurements. _

This effort has revealed several aspects of the geographical and
temporal distribution of particulate mutagenicity in the SCAB, and leads
us to draw the following conclusions:

e Mobile source emissions appear responsible for the bulk of the
mutagenic particulate present in the atmosphere at most locations in the
SCAB. This is demonstrated by the good correlations between conventional
air quality dindicators of such emissions (NOX, C0, Pb, Br) and mutagen
levels, and by the strong gradient in mutagen density observed across the
heavily traveled Interstate 405 in West Los Angeles. Some locations in
the area show anomalous particulate mutagenicity (Long Beach and Fontana),
however, which may reflect local stationary source emissions.

e Particulate mutagenicity displays many of the characteristics of a
gas-phase pollutant in terms of its atmospheric residence time, transport
behavior, and its response to meteorological conditions such as inversion
heights. These features are a result of the low deposition rates charac-
teristic of sub-micron particles.

® Some proumutagenic species present in freshly emitted POM appear to
be susceptible to rapid destruction or removal from the suspended partic-
ulate phase.

° Secondary photochemically-generated aerosol does not appear to

contribute substantially to particulate mutagenicity. No significant
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correlation was observed between bg.,. or TSP values and mutagen densi-
ty. Periods of high gas-to-particle conversion rates and photochemical
oxidant generation generally coincided with minima in the diurnal mutagen
density and loading curves. This does not mean that particulate organic
transformation is unimportant, however.

e Nitroarenes may contribute substantially to the direct mutagenic
activity of SCAB suspended particles. '

. Carbon monoxide concentration is the best predictor of mutagen
density among the routinely monitored air quality parameters. _

e Short-term peak particulate mutagenicity is routinely much higher
than longer-term average values. This aspect of the problem should be
considered in both control strategies and in epidemiology studies designed
to detect health effects from this phenomenon. For example, populations
exposed to these peak levels, such as commuters, should show such effects
most clearly.

® The issue of filter artifacts remains unresolved; although the
correspondence between the average of short-term samples and concurrently
collected long-term samples was generally very good, the possibility of
very rapid formation or destruction of mutagenic species on a sampling
filter remains.

e Present levels of particulate mutagenicity in the SCAB lie in the

range of 0-200 TA98 revertants/cubic meter using our procedures.
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II. TWELVE-HOUR SAMPLING PERIODS: 72-HOUR PROFILE OF THE
MUTAGENICITY OF EXTRACTS OF AMBIENT POM
COLLECTED FEBRUARY 4-7, 1980

A. Introduction

This analysis was designed to evaluate the feasibility of the high-

resolution studies conducted later in the year. Sampling was initiated

‘during a severe 'winter smog" episode, and continued for three days, Feb-

ruary 4-7, 1980. Particulate mutagenicity measurements were taken at nine
locations throughout the Southern California Air Basin over 72 continuous
hours with 12-hour resolution. As was the case in our 1979 study, filters
were changed at 12-hour intervals. Each filter was analyzed separately in

this case, however, in order to obtain improved temporal resolution.

B. Sampling Procedures and Sites

An additional site was added to the eight used in the 1979 studies
(Pitts et al., 1980); a set of hi-vols was located at the Haagen-Smit
Laboratory in El Monte giving an additional receptor site between Califor-
nia State University at Los Angeles (CSULA) and Harvey Mudd College in
Claremont. The samplers were situated on the roof of an air monitoring
station on the southwest corner of the Haagen-Smit Laboratory approxima-
tely 4 m above the parking lot. Some localized diesel truck emissions
could be expected from the warehouse immediately to the west. The upwind
(based on prevailing westerly winds) West Los Angeles freeway site used to
investigate vehicular emission was relocated when the building used as the
original site was demolished. The replacement area was at the back fence
of the National Guard Armory, about 200 m southwest of the original
site. All the sampling locations are shown in Figure 1.

In summary, the locations were chosen as follows: West Los Angeles
(WLA) for vehicular emissions, Long Beach (LB) for petroleum refineries
emissions, Costa Mesa (CM) for power plant emissions, Fontana (F) for
steel mill emissions and CSULA (LA), ELl Monte (EM), Claremont (C) and
Riverside (R) as receptor sites of increasing distance from the major
primary emission sources.

Two standard hi-vol samplers (Sierra Model 305-2000) were located at
each site. By means of a special adapter the exhaust from the motor

housing was routed away from the sampler intake with 5 m of 4" dryer
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ducting. Sampling rates were set and maintained at 40 SCFM by use of a
Sierra Model 330 orifice plate flow measuring device and Sierra Model 310
mass flow controllerse.

Teflon—-impregnated glass fiber filters (Pallflex T60A20) were used
for the particulate collectioms. This filter type was chosen for its
presumed inertmess (although comparison studies conducted during the
previous grant period showed no artifact that could be ascribable to this
quality), low organic background and ease of extraction. Prior to use all
filters were thoroughly extracted with CH2C12 and CH3OH, dried under
vacuum, equilibrated at 75°F and 50% RH, weighed, wrapped in aluminum
foil, and placed in file folders. After collection, the loaded filters
were re—equilibrated at 75°F and 50% RH, reweighed to determine particu-—
late loadings, and placed in a -20°C freezer to await extraction.

The hi-vols were run on a day (0900-2100 hrs PST) and night (2100-
0900 hrs PST) basis in order to make a distinction between a daytime
atmosphere which is highly oxidizing and reactive in nature and a night-
time atmosphere which 1is higher in primary, wuntransformed pollutants.
Since one person was assigned two sites the actual filter change time
varied by £ 1/2 hour.

Each of the 12-hour day and night samples from these collections were
not combined for processing as had been done in year omne, but treated
separately. This revision was made for two reasons. First, an estimate
was needed of the number of hi-vols necessary during the short-term,
three-hour collections. When using short-term collections, enough samp-
lers must be run simultaneously to yield sufficient material for the chem-
ical and mutagenic assays. One sampler operated for 12 hours will collect
approximately as much particulate matter as four three-~hour samples
collected in parallel. Thus, if one filter from the 12-hour collections
yielded sufficient material for this study, then the short-term collec-
tions could be carried out with five hi-vols at each site (the additional
hi-vol was added as backup in case of mechanical failure or during periods
of light pollution). Second, keeping the 12-hour samplers separate would
allow the compilation of a three-day profile of the mutagenic activity of
ambient particles collected in the Scuth Coast Air Basin. These data
could show both the day-to-day variation in mutagenic activity and changes

between day and night samples and when coupled with other ambient air
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quality measurements, could yield clues concerning the sources and poten-

tial transformation of particulates containing mutagenic components.

C. Extraction and Sample Handling Procedures

The unexposed edges of each filter were trimmed, and the particulate-
laden remainder was extracted by ultrasonic agitation with two 150 ml
portions of a 1l:1:1 (v/v/v) mixture of methanol, dichloromethane and
toluene at 35°C. The residual solids and extraction flask were rinsed
three times with a small additional amount of solvent (~25 ml), and the
extract was filtered through a 0.5 micron fluoropore filter into a 500 ml
round-bottomed flask. The bulk of the solvent was removed in vacuo (35°,
> 20 Torr) and the residue was transferred to a tared amber vial sealed
with a Teflon-faced silicone septum. Each sample was dried to comstant (&
1%) weight under a gentle stream of nitrogen gas at 35-40°C. The samples
were then transferred to our microbiology laboratory for Ames assay. All
sample manipulation was performed under red or yellow light to avoid phot-
ochemically-induced composition changes. The sample volumes and gravime-

tric data from this collection are given in Table 1.

D. Preliminary Mutagen Assay

Preliminary testing of the extracts” mutagenicity toward Ames S.
typhimurium strains TA98, TA100, TA1535, TALl537 and TALl538 at various S9
levels indicated that strain TA98 was the most responsive to the samples
tested and that linear dose responses were obtained at sample levels of
0.1-100 pg/plate. The addition of S9 to the test plates was observed to
cause suppression of mutagenic activity for most of the samples. In those
cases where 89 activation was observed, a 2% level provided the optimum
response. For the quantitative testing, the samples were plated in trip-
licate with Ames’ strain TA98 at dose levels of 1, 10, 20, 40, 80, 100,
150, 200 and 400 pg/plate, with and without 2% S9. During each test, TA98
was checked to determine that the strain maintained sensitivity to UV
light and crystal violet, and resistance to ampicillin. Dose-responses to
the standard control mutagens 2-nitrofluorene (2-NF), 2-aminoanthracene
(2-AA) and benzo(a)pyrene (BaP) were determined in parallel with the
ambient samples. Response to these standards showed good agreement on the

two mutagen assay test days: 2-NF gave 490 and 460 (+ 20) rev/ug/plate
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Table 1. Sample Volumes and Gravimetric Data for the February 4-7, 1980,

Particulate Samples

Total
Air Particulate Extract Suspended
Sample Volume Mass Mass Particulate
Location Interval (m) (mg) (mg) (ug/m3)

West Los Angeles 4N 816 110.3 80.477 135
5D 801 115.8 67.201 145

5N 799 76.8 41.286 96

6D 796 91.6 13.085 115

6N 821 52.8 7.236 64

7D 792 52.2 7.170 66

Westwood 4N 816 106.2 52.346 130
5D 797 153.4 72.969 192

SN 809 83.9 43.366 104

6D 809 164.7 17.232 204

6N 892 57.4 8.668 64

7D 792 58.7 7.835 74

Long Beach 4N 769 73.6 38.563 96
5D 855 145.9 64.289 171

5N 770 62.9 28.081 82

6D 843 146.1 30.339 173

6N 755 74.9 6.807 99

7D 806 84.7 15.619 105

CSULA 4N 883 143.9 73.927 163
5D 731 132.5 71.465 181

5N 814 110.6 53.753 136

6D 805 127.2 38.254 158

6N 815 108.7 8.026 133

7D 787 76.5 9.991 97

Costa Mesa 4N 855 97.5 51.190 115
5D 763 7606 38.157 100

SN 866 72.2 35.134 33

6D 758 127.5 41.373 168

6N 906 149.3 38.720 165

7D 806 85.0 16.148 105

El Monte 4N 844 212.4 75.624 252
5D 758 164.8 70.016 217

5N 816 90.6 48.250 111

6D 803 171.1 54.223 208

6N 798 154.4 32.177 193

7D 788 66.0 11.777 84

(continued)
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Table 1 (continued)
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e s

_ Total
Air Particulate Extract Suspended
Sample * Volume Mass Mass Particu%ate
Location Interval (m3) (mg) (mg) (ug/m>)
Claremont 4N 770 64.0 38.986 83
5D 838 144.8 72.891 173
5N 758 117.0 76.254 . 154
6D 877 274.4 160.734 313
6N 747 187.8 64.841 251
7D 781 50.1 6.765 - 64
Fontana 4N 838 204.3 106.902 244
5D 783 205.7 94.848 263
5N 838 126.1 72.706 150
6D 787 356.9 177.347 453
6N 865 119.7 44.839 138
7D - - - -
Riverside 4N 818 23.9 5.575 29
5D 816 108.2 57.239 133
5N 803 186.7 126.786 233
6D 816 223.9 145.783 274
6N 795 97.9 15.293 123
7D 792 49.9 3.823 63

*Arabic numeral indicates date of collection; D = day interval
(0900-2100 PS); N = night interval (2100-0900 PST).

over a range of 0-1 ug/plate in the absence of S9 on May 19 and 28, 1980,
respectively; 2-AA gave a nonlinear (S-shaped) dose response over a range
of 0-2 ug/plate at 2% S9 comcentration, producing 5621 + 138 revertants at
1.5 ug/plate on May 19, 1980 and 5988 * 168 revertants at the same dose on
May 27, 1980 and was inactive in the absence of 39. Benzo(a)pyrene,
tested at dose levels of 0.25, 0.5, 0.75, 1.0, 1.5, 2.0 and 5.0 pg/plate
in the presence of 2% S9, also produced nonlinear response curves. The
number of revertants produced at doses of 0.75 and 1.0 ug/plate differed
between the two days, but activities at higher and lower doses compared
favorably. At 0.5 ug/plate, BaP produced 126 + 8 revertants on May 19,
1980 and 140 + 12 revertants on May 24, 1980.

Dose-response data for this study were reduced to sample specific

activity by means of a recently implemented computer program. The average
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and standard deviation of untreated control plates were calculated to
estimate the background count (number of spontaneous reversions). The
counts of the treated plates were adjusted by a Biotran calibration curve,
averaged and corrected for spontaneous background. The standard norm for
the mean at each concentration was also calculated over several ranges of
concentration to determine the linear portion.

For the following calculations, let

Yo = average background count

b, = number of plates for background calculation
S, = standard deviation of background plates

0o; = raw count for ith plate

zy = f(pi) according to calibration curve
n_. = number of plates at each concentration

The plate count and standard deviation at each concentration are:

_ (2222
Iz 2 n
- _ 1 Lz p
z = s =
n z -1
n
P

The slope (specific activity) and intercept of the dose-response relation

were calculated by the usual linear regression equations.

specific activity

intercept Eﬁ'— activity Eﬁ
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y adjusted plate count at x

n

nunmber of concentration levels tested.

This procedure was carried out initially using all of the Ames test
data. The calculated fit was then compared to the raw data as displayed
on the video terminal, and an operator then instructed the program to
eliminate those points which did not correspond to the linear region.

These mutagenicity data are presented in Table 2.

E. Adir Quality and Air Mass Trajectory Measurements

Except at the El Monte site the ambient air quality data were compiled
from the following nearby South Coast Alr Quality Management District
(SCAQMD) monitoring stations: West Los Angeles, SCAQMD 086; Long Beach,
SCAQMD 072; downtown Los Angeles, SCAQMD 987; Costa Mesa, SCAQMD 3192;
Pomona, SCAQMD 075; Fontana, SCAQMD 5176; Riverside, SCAQMD 4l44. Air
quality data at El Monte was obtained from an Instrumented trailer at the
ARB Haagen-Smit Laboratory. These data are shown in Tables 3 through 8.

In order to obtain information about the origin of the sampled air and
the prevailing wind direction during the sampling period, wind direction
and velocity data from monitoring stations throughout the SCAB were
compiled and used to back-calculate trajectories of the sampled air
masses. The procedure used was as follows:

(1) The sampling interval was divided into six two-hour segments.

(2) Each trajectory was calculated by moving backwards in hourly
intervals from the chronological termination point (the collection
site). At each point on the trajectory (xt, Ve t), the wind speed and
direction data for the previous hour at the three closest monitoring
stations were wused to calculate a vector with the closer stations
receiving a proportionately higher mathematical weighting. The new
coordinates for t._j, y,.; Were then calculated from this vector.

(3) This process was repeated for the next previous hour using

another set of coordinates.

(Text begins again on page 47)
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(4) The hourly coordinates of the trajectory were backplotted for 24
hours or until no stations were deemed close or a mountain range or the
ocean was reached.

These trajectories are plotted in Figures 9 through 14 for the six 12-

hour sampling periods.

F. Discussion

The 36-hour mean particulate mutagen densities during the day (0900-
2100 PST) and night (2100-0900 PST) collection periods for the nine samp-
ling stations are plotted in Figure 15. This presentation corrésponds to
the results which would have been obtained if the "winter" sample had been
treated in the same way as our previous "summer" sample (i.e., grouping of
the six sample filters at each site into "day" and "night" sample sets) as
reported in the final report for year one (Pitts et al., 1980; see Figure
16). Comparisons of the mutagenicity data from the two collections (July
1979 vs. February 1980) reveals several differences:

(1) The direct-acting mutagen density was significantly higher (200-
300%) during the winter collection period; response of the standard direct
mutagen 2-nitrofluorene was statistically identical in each experiment, so
that this difference cannot be ascribed to any change in the sensitivity
of TA98. ‘

(2) The average measured activity in the presence of S9 was lower
than the direct activity at most of the sites for the winter samples, in
contrast to the summer assay results which displayed higher mutagenic
activity in the presence of S9. This effect is probably due to several
factors, including the high level of direct activity in the winter samples
and an apparent change in sensitivity of the TA98/S9 system to activatable
mutagens such as BaP. The response of TA98 to BaP in the presence of 2%
S9 was lower during analysis of the winter samples. Whether this is
ascribable to changes in the sensitivity of the bacterial straims or to
differences between S9 lots used for these experiments is not clear.

(3) The geographical variation of the 36-hour (day and night) average

mutagen density values was much less pronounced during the winter

(Text beilngs again on page 56)
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Figure 11. Air mass trajectories for the 12-hour sampling period February 5 (2100) - February 6 (0900) ([5N], 1980.
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collection, probably due to the variability of wind direction and speed
during the sampling period (see next sectiom). Thus, the three-day
average values presented in Figure 15 are not interpretable in terms of
transport phenomena.

Figures 17 and 18 show the measured 12-hour average values of direct-
acting mutagen density (revertants/cubic meter) and mutagen loading
(revertants/ug particulate), respectively, during each of the six 12-hour
sampling periods at the nine sampling stations, as determined by our pro-
cedure with TA98. The advantages of the improved precision which we have
attained in this study are readily apparent. It is clear that sampling
was initiated during a period of high particulate mutagenicity and that
the measured activity declined during the sampling period as the air qual-
ity improved. The peak 12-hour average levels measured here exceeded the
36-hour average levels by more than 100% at several sites. The distribu-
tion and intemnsity of particulate mutagenicity over this period is consis-
tent with the other measured pollutant data and the calculated wind
trajectories.

The sampling period started at 9 p.m. (2100 hours) on February 4, 1980
when relatively high levels of ozone for this season were predicted.
Indeed, on February 6 ambient air quality data taken at the ARB Mobile
Laboratory at the UCR campus showed an ozone peak of 110 ppb accompanied
by clear sunshine, mild temperatures (26°C max) and moderate humidity (40%
min). The morning NO, peak of 190 ppb is indicative of substantial levels
of primary pollutants, while the PAN maximum of 13 ppb is typical of "win-
ter smog" episodes.

A number of observations can be made from the air quality data.
First, the particulate and gas phase data both show a sharp reduction in
pollutant councentration on February 7 when a Santa Ana wind pattern became
established. Second, the particulate loadings and mutagen densities at
the freeway downwind site were significantly greater during the daytime
when westerly winds predominated, but lower at night when air flow was
light and variable. Higher total suspended particles (TSP”s) were also
observed during the day for this pair of sites as well as most of the
others. As expected, inland receptor areas showed higher aerosol concen-

trations than the coastal sites.
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The trajectory calculations show that offshore flow prevailed at the
inland sites during the first sampling period, when the highest mutagen
density and loading occurred at the coastal and Intermediate sites.
Onshore flow beginning on the afternoon of February 5 produced transport
to the 1inland sites and resulted in a reversal of the prior distribu-
tion. Finally, strong winds which began on the evening of February 6
resulted in lowered values of the mutagenicity and other pollutant levels
excepting the TSP values, which more probably raised as a result of dust

resuspension by the winds.
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